Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{Ag}_{2.54} \mathrm{TI}_{2} \mathrm{Mo}_{12} \mathrm{Se}_{15}$: a new structure type containing Mo_{6} and Mo_{9} clusters

P. Gougeon, ${ }^{\text {a }}{ }^{*}$ P. Gall, ${ }^{\text {a }}$ R. Gautier ${ }^{\text {b }}$ and M. Potel ${ }^{\text {a }}$

${ }^{\text {a }}$ Sciences Chimiques de Rennes, CSM-INSA, UMR CNRS No. 6226, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France, and ${ }^{\mathbf{b}}$ Sciences Chimiques de Rennes, UMR 6226 CNRS, Ecole Nationale Supérieure de Chimie de Rennes, Avenue du Général Leclerc, CS 50837, 35708 Rennes CEDEX 7, France Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Received 15 February 2010
Accepted 18 May 2010
Online 25 May 2010
The novel structure-type $\mathrm{Ag}_{2.54} \mathrm{Tl}_{2} \mathrm{Mo}_{12} \mathrm{Se}_{15}$ (silver thallium molybdenum selenide) is built up of $\mathrm{Mo}_{6} \mathrm{Se}_{8}^{\mathrm{i}} \mathrm{Se}_{6}^{\mathrm{a}}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{11}^{\mathrm{i}} \mathrm{Se}_{6}^{\mathrm{a}}$ cluster units in a $1: 2$ ratio, which are threedimensionally connected to form the Mo-Se network. The Ag and Tl cations are distributed in several voids within the cluster network. Three of the seven independent Se atoms and one Tl atom lie on sites with 3 .. symmetry (Wyckoff sites $2 c$ or $2 d$).

Comment

In solid-state chemistry, the crystal structures of reduced molybdenum chalcogenides are characterized by molybdenum clusters of various sizes and geometries. Although most Mo cluster compounds contain just one type of cluster, some of them can present up to four different types, as observed in $\mathrm{Pr}_{4} \mathrm{Mo}_{9} \mathrm{O}_{18}$ (Tortelier \& Gougeon, 1998). In most reduced Mo chalcogenides, we have observed only one type of cluster, as exemplified by the series $M_{n-2} \mathrm{Mo}_{3 n} X_{3 n+2}(M=\mathrm{Rb}$ or $\mathrm{Cs} ; X=$ S , Se or $\mathrm{Te} ; n=3,4,5,6,7,8,10$ or 12) containing $\mathrm{Mo}_{9}, \mathrm{Mo}_{12}$, $\mathrm{Mo}_{15}, \mathrm{Mo}_{18}, \mathrm{Mo}_{21}, \mathrm{Mo}_{24}, \mathrm{Mo}_{30}$ and Mo_{36} clusters (Gautier et al., 1998; Gougeon, 1984; Gougeon et al., 1984, 1987, 1988, 1989a,b, 1990; Thomas et al., 1997; Picard, Gougeon \& Potel, 1999; Picard, Halet et al., 1999). On the other hand, in the series $\mathrm{Rb}_{2 n} \mathrm{Mo}_{9} X_{11} \mathrm{Mo}_{6 n} X_{6 n+2}(n=1,2,3,4$ and 5; Picard et al., 2000), we found clusters of odd and even nuclearity which coexist in equal proportions. Subsequently, we presented a new structural type, $\mathrm{Rb}_{4} \mathrm{Mo}_{21} \mathrm{Se}_{24}$ (Picard et al., 2001), also containing odd and even nuclearity clusters, i.e. Mo_{12} and Mo_{15}, but in the ratio $1: 2$. We report here a new structural type, $\mathrm{Ag}_{2.54} \mathrm{Tl}_{2} \mathrm{Mo}_{12} \mathrm{Se}_{15}$, containing Mo_{6} and Mo_{9} clusters in the ratio 1:2.

A view of the crystal structure of $\mathrm{Ag}_{2.54} \mathrm{Tl}_{2} \mathrm{Mo}_{12} \mathrm{Se}_{15}$ is shown in Fig. 1. It is based on octahedral Mo_{6} and bioctahedral Mo_{9} clusters surrounded by 14 and 17 Se atoms, respectively (Fig. 2), to form $\mathrm{Mo}_{6} \mathrm{Se}_{8}^{\mathrm{i}} \mathrm{Se}_{6}^{\mathrm{a}}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{11}^{\mathrm{i}} \mathrm{Se}_{6}^{\mathrm{a}}$ cluster units. The latter units share some of their Se ligands according to the

Figure 1
A view of $\mathrm{Ag}_{2.54} \mathrm{Tl}_{2} \mathrm{Mo}_{12} \mathrm{Se}_{15}$ along [110]. Displacement ellipsoids are drawn at the 97% probability level.

Figure 2
Plot showing the atom-numbering scheme and the inter-unit linkage of the $\mathrm{Mo}_{9} \mathrm{Se}_{11} \mathrm{Se}_{6}$ and $\mathrm{Mo}_{6} \mathrm{Se}_{8} \mathrm{Se}_{6}$ cluster units. Displacement ellipsoids are drawn at the 97% probability level.
connective formulae $\mathrm{Mo}_{6} \mathrm{Se}_{2}^{\mathrm{i}} \mathrm{Se}_{6 / 2}^{\mathrm{i}-\mathrm{a}} \mathrm{Se}_{6 / 2}^{\mathrm{a}-\mathrm{i}}$ and $\mathrm{Mo}_{9} \mathrm{Se}_{5}^{\mathrm{i}} \mathrm{Se}_{6 / 2}^{\mathrm{i}-\mathrm{a}} \mathrm{Se}_{6 / 2}^{\mathrm{a}-\mathrm{i}}$ to form the three-dimensional Mo-Se framework [for details of the i- and a-type (inner and ausser) ligand notation, see Schäfer \& von Schnering (1964)]. This arrangement results in each $\mathrm{Mo}_{6} \mathrm{Se}_{8} \mathrm{Se}_{6}$ unit being surrounded by six $\mathrm{Mo}_{9} \mathrm{Se}_{11} \mathrm{Se}_{6}$ units centred at the apices of a trigonal prism, while each $\mathrm{Mo}_{9} \mathrm{Se}_{11} \mathrm{Se}_{6}$ unit is surrounded by three $\mathrm{Mo}_{6} \mathrm{Se}_{8} \mathrm{Se}_{6}$ and three $\mathrm{Mo}_{9} \mathrm{Se}_{11} \mathrm{Se}_{6}$ units, also forming a trigonal prism.

The Mo_{6} cluster exhibits $\overline{3}$.. symmetry, as in the rhombohedral Chevrel phase $M_{x} \mathrm{Mo}_{6} \mathrm{Se}_{8}$. The Mo_{6} cluster is slightly distorted, with Mo-Mo distances of 2.6879 (10) \AA for the intra-triangle distances (distances between the Mo atoms related through the threefold axis) and 2.7007 (7) \AA for the inter-triangle distances. This clearly indicates that the number of electrons per Mo_{6}, also called the metallic electron count (MEC), should be close to 23 . Indeed, previous work on the

Figure 3
The Se coordination polyhedron for Ag1. The symmetry codes are as in Table 1.

Chevrel phases (Yvon et al., 1977) has shown that when the MEC increases from 20 to 24 , the Mo_{6} cluster becomes more regular. Thus, in $\mathrm{Mo}_{6} \mathrm{Se}_{8}$ in which the MEC is 20, the intra- and inter-triangle Mo-Mo distances are 2.683 and 2.836 (8) \AA, respectively (Bars et al., 1973), while in $\mathrm{Pr}_{0.86} \mathrm{Mo}_{6} \mathrm{Se}_{8}$ (Le Berre et al., 2000), with an MEC of 22.58, the intra- and inter-triangle Mo-Mo distances are 2.6812 (6) and 2.7268 (7) Å, respectively, and in $\mathrm{Li}_{3.2} \mathrm{Mo}_{6} \mathrm{Se}_{8}$, with an MEC of 23.2, they are 2.6727 and $2.6733 \AA$, respectively (Cava et al., 1984).

The Mo_{9} cluster exhibits 3.. symmetry. The Mo-Mo distances within the Mo_{9} clusters are 2.6374 (8), 2.7346 (7) and 2.6163 (9) \AA within the triangles made by atoms Mo2, Mo3 and Mo4, respectively, 2.6896 (8) and 2.7757 (7) \AA for the inter-triangle distances between the two triangles formed by atoms Mo2 and Mo3, respectively, and 2.6628 (8) and 2.7475 (8) \AA for the the inter-triangle distances between the two triangles formed by atoms Mo 3 and Mo4, respectively.

In the Mo_{9} cluster, the MEC, which can vary from 32 to 36 (Hughbanks \& Hoffmann, 1983; Gautier et al., 1997), predominantly affects the Mo-Mo bonds within the median triangle (Mo3-Mo3 ${ }^{\text {iii }}$ bonds in the title compound; symmetry codes are as in Table 1) (Potel et al., 1984). A comparison of the Mo-Mo bonds within the median triangle in different compounds containing only Mo_{9} clusters shows they are similar in the title compound $\left[2.7346\right.$ (7) \AA] and in $\mathrm{Ag}_{4.1} \mathrm{Cl}-$ $\mathrm{Mo}_{9} \mathrm{Se}_{11}$ [2.7362 (5) \AA] , in which the MEC is 35.1 (Gougeon et al., 2004). Consequently, the approximately nine electrons contributed by the five Ag and four Tl atoms are distributed uniformly over the Mo_{6} and the two Mo_{9} clusters contained in the unit cell (about three electrons on each cluster). The average $\mathrm{Mo}-\mathrm{Mo}$ distances in the two clusters are very similar, $2.693 \AA$ in the Mo_{6} cluster and $2.694 \AA$ in the Mo_{9} cluster. The shortest inter-cluster Mo-Mo distances are 3.6041 (11) \AA between the Mo_{6} and Mo_{9} clusters, and 3.6725 (9) \AA between the Mo_{9} clusters. The Se atoms bridge either one or two Mo triangular faces of the clusters. Moreover, atoms Se 1 and Se 2 are linked to an Mo atom of a neighbouring cluster. The MoSe bond distances range from 2.5492 (9) to 2.6457 (11) \AA within the $\mathrm{Mo}_{6} \mathrm{Se}_{8} \mathrm{Se}_{6}$ unit and from 2.5319 (9) to 2.7085 (10) \AA within the $\mathrm{Mo}_{9} \mathrm{Se}_{11} \mathrm{Se}_{6}$ unit.

The Ag and Tl atoms reside in cavities between the cluster units. Atom Ag1 partially occupies [0.845 (3)] triangular groups of distorted tetrahedral sites of Se atoms having the

Figure 4
The environments of atoms Tl 1 and T 12 . The symmetry codes are as in Table 1.
apex atom Se7 in common around the threefold axis (Fig. 3). The maximum of the Ag 1 probability density function is very close to the triangular face opposite the common apex atom Se7, with Ag1-Se distances of 2.577 (2), 2.6675 (17) and 2.6834 (16) \AA, the $\mathrm{Ag} 1-\mathrm{Se}^{\mathrm{v}}$ distance being 3.0215 (17) \AA. The T11 and Tl2 cations are in penta- and tetracapped trigonal prismatic environments of Se atoms (Fig. 4); the former is similar to that observed for the M element in the ternary compounds $M_{2} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ ($M=\mathrm{In}$ and Ba), in which Mo_{6} and Mo_{9} clusters co-exist in equal proportions (Potel et al., 1981; Gougeon et al., 1989c). The $\mathrm{Tl}-\mathrm{Se}$ distances range from 3.0677 (14) to 4.2039 (9) A for the Tl1 site.

It is interesting to note that, while in $\mathrm{Ba}_{2} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ the Ba atom is nearly equidistant from the axial atoms Se 6 and Se 7 [3.4689 (5) and 3.4761 (5) \AA, respectively], in $\mathrm{Ag}_{2.54} \mathrm{Tl}_{2^{-}}$ $\mathrm{Mo}_{12} \mathrm{Se}_{15}$ atom Tl1 is displaced towards the axial atom Se6, with a Tl1-Se6 distance of 3.0677 (14) \AA compared with 3.8863 (14) \AA for $\mathrm{Tl} 1-\mathrm{Se}^{\mathrm{x}}$. This effect, which may result from the lone pair, is also observed to a lesser extent in $\mathrm{In}_{2} \mathrm{Mo}_{15} \mathrm{Se}_{19}$, with $\mathrm{In}-\mathrm{Se}$ distances of 3.468 (6) and 3.593 (6) \AA. The environment of atom T 12 has been observed previously in $\mathrm{Tl}_{2} \mathrm{Mo}_{9} \mathrm{~S}_{11}$ (Potel et al., 1980), in which Mo_{6} and Mo_{12} clusters are found, as well as in $\mathrm{Cr}_{1.45} \mathrm{Tl}_{1.87} \mathrm{Mo}_{15} \mathrm{Se}_{19}$, containing an equal mixture of Mo_{6} and Mo_{9} clusters (Gougeon et al., 2009). In the latter compound, the $\mathrm{Tl}-\mathrm{Se}$ distances range from 3.1152 (11) to 4.2214 (9) A \AA, compared with 2.9991 (15) to 4.0667 (9) \AA in the title compound. The average $\mathrm{Tl}-$ Se values of 3.67 and $3.68 \AA$ for the Tl 1 and Tl 2 sites, respectively, are in very good agreement with the distance of $3.68 \AA$ expected from the sum of the ionic radii of

Figure 5
Total density of states computed for $\left(\mathrm{Mo}_{12} \mathrm{Se}_{15}\right)^{4.5-}$ and projected contributions arising from Mo_{6} and Mo_{9} clusters.

Figure 6
Nonharmonic probability density isosurfaces, viewed along the c axis, for (a) Tl1, (b) Tl2 and (c) Ag1. Se atoms are drawn at an arbitrary size. The level of the three-dimensional maps is $0.05 \AA^{-3}$.
Se^{2-} and Tl^{+}with coordination number 12 , according to Shannon (1976).

In $\mathrm{Rb}_{2 \mathrm{n}}\left(\mathrm{Mo}_{9} \mathrm{~S}_{11}\right)\left(\mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}\right)$ compounds, extended Hückel tight-binding (EH-TB) calculations have shown that the clusters are hypoelectronic (Picard et al., 2000). Assuming a +1 oxidation state for the Ag and Tl cations, the MEC of the whole molybdenum cluster in the title compound is 46.5 . Because there are twice as many Mo_{9} as Mo_{6} in this compound, the MEC of one Mo_{6} and two Mo_{9} units is 93. EHTB calculations have been carried out in order to check the assumption, based on distance analysis, that electrons
provided by Ag and Tl cations are uniformly distributed over both clusters. The electronic structure of the title compound is approximated by $\left(\mathrm{Mo}_{12} \mathrm{Se}_{15}\right)^{4.5-}$. The molybdenum and selenium extended Hückel parameters used by Gautier et al. (1998) have been considered. The total and Mo projected density of states (DOS) curves obtained from 32 irreducible k points are sketched in Fig. 5. The Fermi level cuts a narrow peak of DOS centred on the Mo_{6} cluster. This peak is derived mainly from the doubly degenerate e_{g} level of the molecular orbital diagram of an isolated $\mathrm{Mo}_{6} \mathrm{Se}_{14}$ cluster (Hughbanks \& Hoffmann, 1983). Since this peak is roughly half-occupied, the MEC of the Mo_{6} unit is close to 22 ME. The two DOS peaks that lie above the Fermi level are derived mainly from the Mo_{9} cluster. These peaks show some Mo-Mo antibonding character within the bioctahedral cluster, whereas the occupied bands show an overall Mo-Mo character within the same cluster. This means that the MEC of the Mo_{9} unit in this compound must be close to the optimal value. In fact, assuming an MEC of 22 for the Mo_{6} cluster, the MEC per Mo_{9} unit is $(93-22) / 2=35.5$. This distribution differs slightly from that resulting from the analysis of Mo-Mo distances within the clusters. However, this difference cannot be considered significant since: (i) the quantum periodic calculations we have carried out are semi-empirical, (ii) Ag and Tl atoms have been neglected within the calculations because of the lack of reliable EH parameters for Tl , and (iii) the MEC values resulting from the empirical distance analysis show significant uncertainties.

Experimental

Single crystals of $\mathrm{Ag}_{2.54} \mathrm{Tl}_{2} \mathrm{Mo}_{12} \mathrm{Se}_{15}$ were prepared from a mixture of $\mathrm{Ag}, \mathrm{MoSe}_{2}, \mathrm{TlSe}$ and Mo with the nominal composition $\mathrm{Ag}_{4} \mathrm{Tl}_{2}{ }^{-}$ $\mathrm{Mo}_{12} \mathrm{Se}_{14}$. Before use, Mo powder was reduced under flowing H_{2} gas at 1273 K for 10 h in order to eliminate any trace of oxygen. The MoSe_{2} and TlSe binaries were obtained by heating stoichiometric mixtures of the elements in sealed evacuated silica tubes for about 2 d at 1073 and 573 K , respectively. All handling of materials was carried out in an argon-filled glove-box. The initial mixture ($c a 5 \mathrm{~g}$) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$ to 1523 K , held at that temperature for 48 h , cooled at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 1373 K , and finally furnace cooled.

Crystal data

$\mathrm{Ag}_{2.535} \mathrm{Mo}_{12} \mathrm{Se}_{15} \mathrm{Tl}_{2}$
$M_{r}=3017.9$
Trigonal, $P \overline{3}$
$a=9.9962$ (1) \AA
$c=15.5364$ (3) A
$V=1344.47(3) \AA^{3}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: analytical (de Meulenaer \& Tompa, 1965) $T_{\text {min }}=0.104, T_{\text {max }}=0.346$

$Z=2$

Mo $K \alpha$ radiation
$\mu=39.41 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.07 \times 0.06 \times 0.03 \mathrm{~mm}$

> 31332 measured reflections 5641 independent reflections 4029 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.097$

Table 1
Selected bond lengths (\AA).

Mo1-Mo1 ${ }^{\text {i }}$	2.6879 (10)	Mo3-Se4	2.6466 (8)
Mo1-Mo1 ${ }^{\text {ii }}$	2.7007 (7)	Mo4-Mo4 ${ }^{\text {iii }}$	2.6163 (9)
Mo1-Mo2 ${ }^{\text {i }}$	3.6041 (10)	Mo4-Mo4 ${ }^{\text {v }}$	3.6725 (9)
Mo1-Se1	2.5914 (8)	Mo4-Se3	2.6791 (9)
Mo1-Se1 ${ }^{\text {i }}$	2.6193 (8)	Mo4-Se4	2.5688 (8)
$\mathrm{Mo} 1-\mathrm{Se} 1^{\text {ii }}$	2.5741 (9)	Mo4-Se4 $4^{\text {iii }}$	2.6637 (8)
Mo1-Se2 ${ }^{\text {i }}$	2.6457 (11)	Mo4-Se4 ${ }^{\text {vi }}$	2.6520 (12)
Mo1-Se5	2.5492 (9)	Mo4-Se7	2.5795 (9)
Mo2-Mo2 ${ }^{\text {iii }}$	2.6374 (8)	$\mathrm{Tl2}-\mathrm{Tl} 2^{\text {vii }}$	3.2831 (17)
Mo2-Mo3	2.6896 (8)	Ag1-Se2 ${ }^{\text {i }}$	2.6675 (17)
$\mathrm{Mo} 2-\mathrm{Mo} 3{ }^{\text {iii }}$	2.7757 (7)	Ag1-Se3	2.577 (2)
Mo2-Se1	2.7085 (10)	Ag1-Se4 ${ }^{\text {i }}$	2.6834 (16)
$\mathrm{Mo} 2-\mathrm{Se} 2$	2.6523 (8)	$\mathrm{Ag} 1-\mathrm{Se}^{\text {v }}$	3.0215 (17)
$\mathrm{Mo} 2-\mathrm{Se} 2{ }^{\text {iii }}$	2.5787 (8)	Tl1-Se1 ${ }^{\text {viii }}$	3.6179 (8)
$\mathrm{Mo} 2-\mathrm{Se} 3$	2.6652 (9)	$\mathrm{T} 11-\mathrm{Se} 2^{\mathrm{ix}}$	3.3036 (8)
Mo2-Se6	2.5319 (9)	Tl1-Se3 ${ }^{\text {viii }}$	4.2039 (9)
Mo3-Mo3 ${ }^{\text {iii }}$	2.7346 (7)	T11-Se6	3.0677 (14)
Mo3-Mo4	2.7475 (8)	$\mathrm{Tl} 1-\mathrm{Se}^{\text {x }}$	3.8863 (14)
Mo3-Mo4 ${ }^{\text {iv }}$	2.6628 (8)	Tl2-Se3 ${ }^{\text {xi }}$	3.7544 (7)
Mo3-Se2	2.6275 (7)	$\mathrm{Tl} 2-\mathrm{Se} 4^{\text {xii }}$	3.4181 (7)
Mo3-Se3	2.5765 (11)	T12-Se4 ${ }^{\text {xiii }}$	4.0667 (9)
Mo3-Se3 ${ }^{\text {iv }}$	2.5839 (13)	$\mathrm{Tl} 2-\mathrm{Se} 5^{\mathrm{xi}}$	2.9991 (15)
$\begin{aligned} & \text { Symmetry codes: (i) }-x+y,-x, z ; \text { (ii) } y,-x+y,-z-1 ; \text { (iii) }-y-1, x-y-1, z ; \text { (iv) } \\ & -x+y,-x-1, z ;(\mathrm{v})-x-1,-y-1,-z ; \text { (vi) } y,-x+y,-z ; \text { (vii) }-x+2,-y+2, \\ & -z+2 ; \quad \text { (viii) } \quad x-y, x,-z-1 ; \text { (ix) }-x,-y-1,-z-1 ; \quad \text { (x) } x, y, z-1 ; \text { (xi) } \\ & x+1, y+1, z+1 ; \text { (xii) }-y+1, x-y+1, z+1 ; \text { (xiii) } y+1,-x+y+1,-z+1 . \end{aligned}$			

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$

> 143 parameters
> $\Delta \rho_{\max }=3.78 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.079$
$S=1.28$
5641 reflections
The structure was solved in the space group $P \overline{3}$ using $\operatorname{SIR} 97$ (Altomare et al., 1999), which revealed all atoms. The final model was refined down to $R=0.169$. Analysis of the data with the TwinRotMat procedure implemented in PLATON (Spek, 2009) revealed that the crystal investigated was merohedrally twinned. Introduction of the twinning matrix $(010,100,00 \overline{1})$ lowered the R factor to 0.059 . At this stage, the difference Fourier map revealed significant electron densities near atoms Tl 1 (5.10 and -2.45 e \AA^{-3}), T12 (7.75 and -8.06 e \AA^{-3}) and Ag 1 (5.59 and -3.85 e \AA^{-3}). Fourth-order tensors in the Gram-Charlier expansion (Johnson \& Levy, 1974) of the thallium and silver displacement parameters were used to better describe the electron density around these cationic sites. The residual R value dropped to 0.0476 and the residual peaks in the vicinity of T11 to 3.50 and $-1.64 \mathrm{e}^{-3}$, in the vicinity of T 12 to 2.87 and $-1.72 \mathrm{e}^{-3}$, and in the vicinity of Ag 1 to 2.05 and -1.95 e \AA^{-3}. The nonharmonic probability density function maps of $\mathrm{Tl} 1, \mathrm{Tl} 2$ and Ag 1 did not show significant negative regions, indicating that the refined model can be considered valid (Bachmann \& Schulz, 1984). Fig. 6 shows the isosurfaces of the probability density for the Ag and Tl atoms. The twin volume ratio was refined to 0.338 (1):0.662 (1). Refinement of the occupancy factor of atom Ag 1 led to the final stoichiometry $\mathrm{Ag}_{2.535(9)} \mathrm{Tl}_{2} \mathrm{Mo}_{12} \mathrm{Se}_{15}$.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999);
program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: JANA2006.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FN3050). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bachmann, R. \& Schulz, H. (1984). Acta Cryst. A40, 668-675.
Bars, O., Guillevic, J. \& Grandjean, D. (1973). J. Solid State Chem. 6, 48-57.
Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Cava, R. J., Santoro, A. \& Tarascon, J. M. (1984). J. Solid State Chem. 54, 193203.

Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Gautier, R., Gougeon, P., Halet, J.-F., Potel, M. \& Saillard, J.-Y. (1997). J. Alloys Compd, 262-263, 311-315.
Gautier, R., Picard, S., Gougeon, P. \& Potel, M. (1998). Mater. Res. Bull. 34, 93-101.
Gougeon, P. (1984). PhD thesis, University of Rennes, France.
Gougeon, P., Padiou, J., Le Marouille, J.-Y., Potel, M. \& Sergent, M. (1984). J. Solid State Chem. 51, 218-226.

Gougeon, P., Potel, M. \& Gautier, R. (2004). Inorg. Chem. 43, 1257-1263.
Gougeon, P., Potel, M., Padiou, J. \& Sergent, M. (1987). Mater. Res. Bull. 22, 1087-1093.
Gougeon, P., Potel, M., Padiou, J. \& Sergent, M. (1988). Mater. Res. Bull. 23, 453-460.
Gougeon, P., Potel, M. \& Sergent, M. (1989a). Acta Cryst. C45, 182-185.
Gougeon, P., Potel, M. \& Sergent, M. (1989b). Acta Cryst. C45, 1413-1415.
Gougeon, P., Potel, M. \& Sergent, M. (1989c). Acta Cryst. C45, 1285-1287.
Gougeon, P., Potel, M. \& Sergent, M. (1990). Acta Cryst. C46, 2284-2287.
Gougeon, P., Salloum, D. \& Potel, M. (2009). Acta Cryst. C65, i87-i90.
Hughbanks, T. \& Hoffmann, R. (1983). J. Am. Chem. Soc. 105, 11501162.

Johnson, C. K. \& Levy, H. A. (1974). International Tables for X-ray Crystallography, edited by J. A. Ibers \& W. C. Hamilton, Vol. IV, pp. 311336. Birmingham: Kynoch Press.

Le Berre, F., Hamard, C., Pena, O. \& Wojakowski, A. (2000). Inorg. Chem. 39, 1100-1105.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands
Petříček, V., Dušek, M. \& Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.
Picard, S., Gougeon, P. \& Potel, M. (1999). Angew. Chem. Int. Ed. 38, 2036.
Picard, S., Gougeon, P. \& Potel, M. (2001). Acta Cryst. C57, 335-336.
Picard, S., Halet, J.-F., Gougeon, P. \& Potel, M. (1999). Inorg. Chem. 38, 44224429.

Picard, S., Saillard, J.-Y., Gougeon, P., Noel, H. \& Potel, M. (2000). J. Solid State Chem. 155, 417-426.
Potel, M., Chevrel, R. \& Sergent, M. (1980). Acta Cryst. B36, 1319-1322.
Potel, M., Chevrel, R. \& Sergent, M. (1981). Acta Cryst. B37, 1007-1010.
Potel, M., Gougeon, P., Chevrel, R. \& Sergent, M. (1984). Rev. Chim. Miner. 21, 509-536.
Schäfer, H. \& von Schnering, H. G. (1964). Angew. Chem. 76, 833-849.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Thomas, C., Picard, S., Gautier, R., Gougeon, P. \& Potel, M. (1997). J. Alloys Compd, 262-263, 305-310.
Tortelier, J. \& Gougeon, P. (1998). Inorg. Chem. 37, 6229-6236.
Yvon, K., Paoli, A., Flükiger, R. \& Chevrel, R. (1977). Acta Cryst. B33, 30663072.

